

ı

Ateliê de Matemática: Trigonometria e Geometria Analítica S01E02

Demonstração do Seno e Cosseno da soma e diferença de arcos

Demonstração do Seno e Cosseno da soma de arcos:

Partindo de um triângulo retângulo **EFG** com a hipotenusa de tamanho 1, inscrito num retângulo **HIJE** como podemos ver na Figura 1.

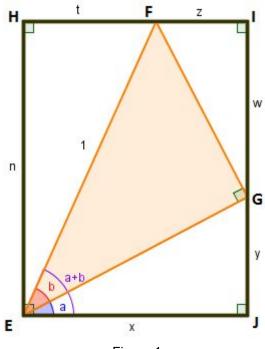


Figura 1

Nomeamos alguns segmentos para uma melhor leitura, como vemos na Figura 1, temos os lados do retângulo EH=n, e EJ=x. Nos outros dois lados desse retângulo, temos HF=t, FI=z, IG=w e GJ=y, logo **z+t=x** e **w+y=n** (por EHIJ ser um retângulo).

O ângulo que chamamos de **b** é o ângulo interno do triângulo no vértice E, o ângulo **a** será do segmento EG até o lado x, então, a soma desses dois ângulos será **a+b** destacado em roxo como podemos ver na Figura 1.

Com as relações Trigonométricas que vimos na aula S01E01, conseguimos calcular os catetos desse triângulo EFG.

П

$$\rightarrow$$
 sen (b) = $\frac{cateto\ oposto}{hipotenusa}$ = $\frac{EG}{1}$ = EG

$$\rightarrow$$
 cos (b)= $\frac{cateto\ adjacente}{hipotenusa}$ = $\frac{FG}{1}$ = FG

Agora podemos completar a nossa imagem.

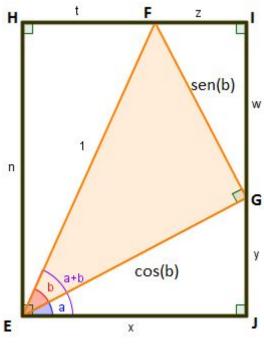


Figura 2

No triângulo **EGJ** de hipotenusa cos(b) e ângulo interno **a**, queremos saber o valor de **x** e de **y**.

$$\rightarrow$$
 cos (a)= $\frac{cateto\ adj\ acente}{hipotenusa}$ = $\frac{x}{cos(b)}$ \rightarrow x= cos(a).cos(b)

$$\rightarrow$$
 sen (a)= $\frac{cateto\ oposto}{hipotenusa}$ = $\frac{y}{cos(b)}$ = \rightarrow y= sen(a).cos(b)

Para descobrir o outro ângulo que falta do triângulo **EGJ**, que vamos chamar de **a'**, teremos que pensar que como temos dois ângulos, **a** e **90°**, e sabendo que a soma dos ângulos interno de qualquer triângulo é 180°. Logo teremos que:

$$a+90^{\circ}+a'=180^{\circ} \rightarrow a'=180^{\circ}-90^{\circ}-a=90^{\circ}-a \rightarrow a'=90^{\circ}-a$$

Com esse resultado, podemos saber o ângulo que forma entre segmento **w** até **FG** que vamos chamar de **w**'. Repare que esse ângulo está no lado do retângulo EHIJ, logo temos que:

$$a'+90^{\circ}+w'=180^{\circ} \rightarrow (90^{\circ}-a)+90^{\circ}+w'=180^{\circ} \rightarrow 180^{\circ}-a+w'=180^{\circ} \rightarrow -a=w' \rightarrow w'=a$$

п

Com esses resultados chegamos na Figura 3, como vemos abaixo:

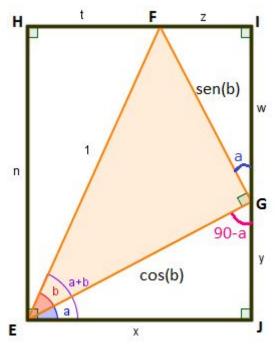


Figura 3

Agora olhando para o triângulo **FIG**, e usando as relações Trigonométricas para Seno e Cosseno:

$$\rightarrow$$
 cos (a)= $\frac{cateto\ adjacente}{hipotenusa}$ = $\frac{w}{sen(b)}$ \rightarrow w= cos(a).sen(b)
 \rightarrow sen (a)= $\frac{cateto\ oposto}{hipotenusa}$ = $\frac{z}{sen(b)}$ = \rightarrow z= sen(a).sen(b)

Para saber os lados do triângulo **EHF**, temos que primeiro calcular os seus ângulos internos. Então, vamos perceber que no vértice E temos um ângulo reto, ou seja 90°, e o ângulo entre o lado do triângulo FE e o lado n vamos nomear de **n**', logo podemos ver que:

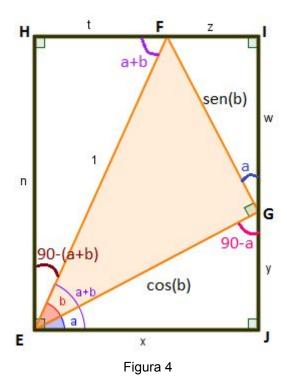
$$\rightarrow$$
 (a+b)+n'=90° \rightarrow n'=90°-(a+b)

Então já temos dois ângulos internos do triângulo **EHF**. Para saber o terceiro ângulo, vamos lembrar que a soma dos três ângulos internos de qualquer triângulo é 180°. E esse ângulo que forma entre o segmento **EF** e o lado **t** chamaremos de **t**'. Logo:

$$\rightarrow$$
 n'+90°+t'=180° \rightarrow 90°-(a+b)+90°+t'=180° \rightarrow 180°+t'=(a+b)+180° \rightarrow **t'=(a+b)**

П

Conforme a Figura 4:



Então agora tendo esse ângulo, vamos calcular os lados **n** e **t**:

$$\rightarrow$$
 cos (a+b)= $\frac{cateto\ adjacente}{hipotenusa}$ = $\frac{t}{1}$ =t \rightarrow **t=cos(a+b)**

$$\rightarrow$$
 sen (a+b)= $\frac{cateto\ adjacente}{hipotenusa} = \frac{n}{1} = n \rightarrow n=sen(a+b)$

Agora, sabemos todos os lados da nossa figura. Então relembrando os valores desses lados:

$$x = cos(a).cos(b)$$
; $y = sen(a).cos(b)$; $w = cos(a).sen(b)$; $z = sen(a).sen(b)$; $t = cos(a+b)$; $n = sen(a+b)$;

E por termos **EHIJ** um retângulo, temos que os lados opostos são congruentes, e então **z+t=x** e **n=w+y**. Logo,

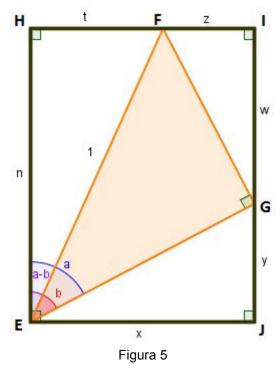
$$z+t=x \rightarrow sen(a).sen(b)+cos(a+b)=cos(a).cos(b) \rightarrow cos(a+b)=cos(a).cos(b)-sen(a).sen(b)$$

$$n=w+y \rightarrow sen(a+b)=cos(a).sen(b)+sen(a).cos(b)$$

ı

cqd

> Demonstração do Seno e Cosseno da diferença de arcos:



Continuando com a mesma figura, e com os mesmos nomes para os lados e segmentos.

Notando uma modificação, agora o ângulo que chamamos de **b** é o ângulo interno do triângulo no vértice E, o ângulo **a** será do segmento EG até o lado n, então, a diferença desses dois ângulos será **a-b** destacado em roxo como podemos ver na Figura 5.

Seguindo os mesmos raciocínios da demonstração anterior, analisando os 3 triângulos internos no retângulo **EHIJ** que estão envolta do triângulo central **EFG**. E usando para os cálculos dos valores dos lados as relações de seno e cosseno, é como vamos dar continuidade para essa demonstração.

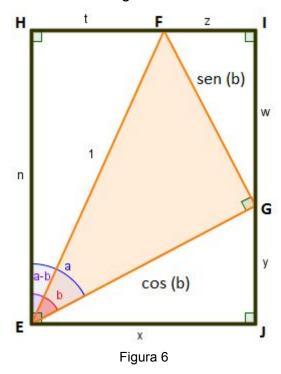
Então, para calcular os catetos desse triângulo EFG. Temos que:

$$\rightarrow$$
 sen (b)= $\frac{cateto\ oposto}{hipotenusa}$ = $\frac{EG}{1}$ = EG

$$\rightarrow$$
 cos (b)= $\frac{cateto\ adjacente}{hipotenusa}$ = $\frac{FG}{1}$ = FG

п

Agora podemos completar a nossa imagem.



Podemos demonstrar analogamente à demonstração anterior, da soma de arcos.

No triângulo **EGJ** de hipotenusa cos(b) e ângulo interno **a**, queremos saber o valor de **x** e de **y**.

$$\rightarrow$$
 cos (a)= $\frac{cateto\ adjacente}{hipotenusa} = \frac{y}{cos(b)} \rightarrow y = cos(a).cos(b)$

$$\rightarrow$$
 sen (a)= $\frac{cateto\ oposto}{hipotenusa}$ = $\frac{x}{cos(b)}$ = \rightarrow x= sen(a).cos(b)

П

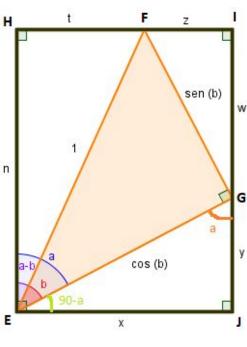


Figura 7

Agora olhando para o triângulo **FIG**, como podemos ver na Figura 8, e usando as relações Trigonométricas para Seno e Cosseno:

$$\rightarrow$$
 cos (a)= $\frac{cateto\ adjacente}{hipotenusa} = \frac{z}{sen(b)} \rightarrow$ z= cos(a).sen(b)

$$\rightarrow$$
 sen (a)= $\frac{cateto\ oposto}{hipotenusa}$ = $\frac{w}{sen(b)}$ = \rightarrow w= sen(a).sen(b)

Ш

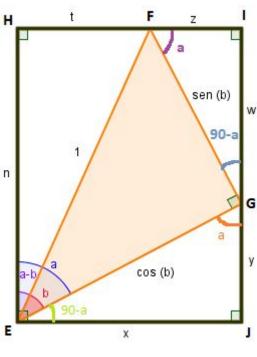


Figura 8

Portanto, analogamente, vemos que n=y+w \Rightarrow n=cos(a-b). Então, cos(a-b)= cos(a).cos(b) + sen(a).sen(b)

Seguindo esse mesmo raciocínio, teremos que:

 $t=x-z \Rightarrow t=sen(a-b) \Rightarrow sen(a-b)=sen(a).cos(b) - sen(b).cos(a)$.

cqd

Fonte: http://bit.profmat-sbm.org.br/xmlui/bitstream/handle/123456789/1344/2012 01140 HUMBERT O GULLO DE BARROS.pdf?sequence=1